
8-December-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Robustness of calculations

● Prepare for final

● Assignment #4

8-December-2007 © Copyright Ian D. Romanick 2007

Fixed­point Representation
Select an n-bit data size, partition k-bits for the

integral part and (n-k)-bits for the fractional part
● Numbers are evenly distributed

• The difference between all representable numbers is
always 1/(2n-k).

● Color is usually done this way: 0-bits for the integral
part, 8-bits for the fractional part

● Also the way all real-time graphics math is done on
processors without floating-point units
• Pre-486, MIPS CPU in Playstation, Pre-68040, many

“embedded” CPUs

8-December-2007 © Copyright Ian D. Romanick 2007

Floating­point Representation
Single precision:

● 1-bit for sign

● 8-bits for exponent

● 23-bits for fractional part

 If E ≠ 0, value = (-1S × 1.F × 2E – 127)

 If E = 0, value = (-1S × 0.F × 2–126)
● These are denormalized (denorm for short)

8-December-2007 © Copyright Ian D. Romanick 2007

Magic Values
 IEEE-754 defines some magic values:

● (E = 0, F = 0, S = 0) → 0

● (E = 0, F = 0, S = 1) → −0

● (E = 255, F = 0, S = 0) → ∞

● (E = 255, F = 0, S = 1) → −∞

● (E = 255, F ≠ 0) → Not a number (a.k.a., NaN)
• More on NaN and Inf in a few slides

8-December-2007 © Copyright Ian D. Romanick 2007

Distribution of Values
As the exponent increases, the real difference

between two values increases
● (E = 200, F = 1) - (E = 200, F = 0) → ~4×1056

● (E = 1, F = 1) - (E = 1, F = 0) → ~1.4×10-45

Usually, this is okay.
● This matches the notion of significant digits

8-December-2007 © Copyright Ian D. Romanick 2007

NaN and Inf
±∞ are used to represent overflow cases

● 1.0e20 / 1.0e-20 = +Inf

● -1.0e20 / 1.0e-20 = -Inf

● 1.0 / 0.0 = +Inf

Not-a-number (NaN) is used to represent
incalculable cases
● 0 / 0 = NaN

● -1 = NaN

● Inf - Inf = NaN

8-December-2007 © Copyright Ian D. Romanick 2007

NaN Quirks
All comparisons involving NaN are false.

● Except NaN ≠ NaN, which is true.

This means the following code segments will
produce different results if x is NaN!
if (X < value) { a() } else { b() }

...

if (X >= value) { b() } else { a() }

8-December-2007 © Copyright Ian D. Romanick 2007

NaN Quirks (cont.)
NaN can help by avoiding the need for divide by

zero tests
● This code from the textbook works even if
Dot(p.n, ab) is zero

int IntersectSegmentPlane(Point a, Point b, Plane p,
 float &t, Point &q)
{
 Vector ab = b – a;
 t = (p.d – Dot(p.n, a)) / Dot(p.n, ab);
 if (t >= 0.0f && t <= 1.0f) {
 q = a + t * ab;
 return 1;
 }
 return 0;
}

8-December-2007 © Copyright Ian D. Romanick 2007

References
Hecker, Chris. 1996. Let's Get to the (Floating) Point. Game Developer

Magazine. (Feb. / Mar. 1996).
http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point

Goldberg, D. 1991. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys. 23, 1 (Mar. 1991), 5-48.
http://docs.sun.com/source/806-3568/ncg_goldberg.html

http://en.wikipedia.org/wiki/IEEE-754

http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://en.wikipedia.org/wiki/IEEE-754

8-December-2007 © Copyright Ian D. Romanick 2007

Conversion and Representation Errors
Lots of interesting, real numbers cannot be

exactly represented
● The more significant digits involved, the more

inexact the representation will be

● √2 get rounded to 1.41421356237309504880
• This is an irrational number with infinite significant digits

8-December-2007 © Copyright Ian D. Romanick 2007

Overflow and Underflow Errors
 If the result is too large (or too small) the result

will overflow (or underflow)
● Multiply two very large (or small) numbers

● Divide a small number by a large number (or vice
versa)

● Overflows will result in ±Inf

● Underflows will result in ±0

8-December-2007 © Copyright Ian D. Romanick 2007

Round­off Errors
Result of an operation has more significant

digits than can be represented
● X = (E = 3, F = 1.413351774) = 11.306814194

● Y = (E = 7, F = 1.933333278) = 247.466659546

● Results of X * Y:
• True result:
2798.05953862742171622812747955322265625

• Computer result: (E = 10, F = 2.732480049) = (E = 11, F
= 1.366240025) = 2798.0595703125

8-December-2007 © Copyright Ian D. Romanick 2007

Digit­cancellation Errors
Related to round-off errors

● Subtracting nearly equal values

● Adding or subtracting a large value and a small
value
• 1e20 + 1e-20 = 1e20

Floating point arithmetic is not associative!
● (9876543.0 + -9876547.0) + 3.45 = -0.5499999...

● 9876543.0 + (-9876547.0 + 3.45) = -1.0

8-December-2007 © Copyright Ian D. Romanick 2007

Input Errors
The source data may have errors

● Inexact measurement from a physical device

● Errors from previous calculations

● etc.

8-December-2007 © Copyright Ian D. Romanick 2007

References
http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_ecgtr_04_a.html

http://en.wikipedia.org/wiki/Floating_point

http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_ecgtr_04_a.html
http://en.wikipedia.org/wiki/Floating_point

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons
Obviously, direct comparison for equality are

just plain wrong

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons
Obviously, direct comparison for equality are

just plain wrong

First improvement: compare absolute difference
to some small value, 

if (fabs(x – y) < epsilon) { ... }

● Called absolute tolerance

● Picking  that works for a range of values is difficult
or impossible
• sqrt(FLT_EPSILON) is usually a good choice

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons (cont.)
Second improvement: compare abs ratio to 1.0

● Called relative tolerance

if (fabs((x / y) - 1.0) <= epsilon)
● Assumes |x| < |y|

if (fabs((x – y) / y) <= epsilon)
● First re-write

if (fabs(x – y) <= epsilon * fabs(y))
● Eliminate division

if (fabs(x – y) <= epsilon * max(fabs(x),
fabs(y)))

● Eliminate |x| < |y| assumption

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons (cont.)
Tolerances do have one ugly side-effect

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons (cont.)
Tolerances do have one ugly side-effect

● A = B and B = C does not imply A = C

8-December-2007 © Copyright Ian D. Romanick 2007

Thick Planes Revisited
Not all numbers can be exactly represented in

floating-point, so the true intersection point of a
line and a plane may not be representable
● Other object-object intersections similarly affected

● Clipping the line to the plane effectively moves part
of the line

8-December-2007 © Copyright Ian D. Romanick 2007

Thick Planes Revisited
Let e be the maximum error in the calculated P,

then the thick plane has radius r, r > e
● How do we select an appropriate e?

8-December-2007 © Copyright Ian D. Romanick 2007

Thick Planes Revisited
Let e be the maximum error in the calculated P,

then the thick plane has radius r, r > e
● How do we select an appropriate e?

● A the line and plane become more parallel, a
selection of R leads to lager and larger e

● The selection of R
limits the size of line
segments or polygons
that we can track
• Pick R based on the

size of the smalled line
or polygon

8-December-2007 © Copyright Ian D. Romanick 2007

Next week...
Final:

● Tuesday, December 11th at 7:45PM.

● DO NOT BE LATE!

8-December-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

