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Data Structures & Algorithms for Geometry

Agenda:
● Robustness of calculations

● Prepare for final

● Assignment #4
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Fixedpoint Representation
Select an n-bit data size, partition k-bits for the 

integral part and (n-k)-bits for the fractional part
● Numbers are evenly distributed

• The difference between all representable numbers is 
always 1/(2n-k).

● Color is usually done this way: 0-bits for the integral 
part, 8-bits for the fractional part

● Also the way all real-time graphics math is done on 
processors without floating-point units
• Pre-486, MIPS CPU in Playstation, Pre-68040, many 

“embedded” CPUs
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Floatingpoint Representation
Single precision:

● 1-bit for sign

● 8-bits for exponent

● 23-bits for fractional part

 If E ≠ 0, value = (-1S × 1.F × 2E – 127)

 If E = 0, value = (-1S × 0.F × 2–126)
● These are denormalized (denorm for short)
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Magic Values
 IEEE-754 defines some magic values:

● (E = 0, F = 0, S = 0) → 0

● (E = 0, F = 0, S = 1) → −0

● (E = 255, F = 0, S = 0) → ∞

● (E = 255, F = 0, S = 1) → −∞

● (E = 255, F ≠ 0) → Not a number (a.k.a., NaN)
• More on NaN and Inf in a few slides
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Distribution of Values
As the exponent increases, the real difference 

between two values increases
● (E = 200, F = 1) - (E = 200, F = 0) → ~4×1056

● (E = 1, F = 1) - (E = 1, F = 0) → ~1.4×10-45

Usually, this is okay.
● This matches the notion of significant digits
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NaN and Inf
±∞ are used to represent overflow cases

● 1.0e20 / 1.0e-20 = +Inf

● -1.0e20 / 1.0e-20 = -Inf

● 1.0 / 0.0 = +Inf

Not-a-number (NaN) is used to represent 
incalculable cases
● 0 / 0 = NaN

● -1 = NaN

● Inf - Inf = NaN
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NaN Quirks
All comparisons involving NaN are false.

● Except NaN ≠ NaN, which is true.

This means the following code segments will 
produce different results if x is NaN!
if (X < value) { a() } else { b() }

...

if (X >= value) { b() } else { a() }
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NaN Quirks (cont.)
NaN can help by avoiding the need for divide by 

zero tests
● This code from the textbook works even if 
Dot(p.n, ab) is zero

int IntersectSegmentPlane(Point a, Point b, Plane p,
    float &t, Point &q)
{
    Vector ab = b – a;
    t = (p.d – Dot(p.n, a)) / Dot(p.n, ab);
    if (t >= 0.0f && t <= 1.0f) {
        q = a + t * ab;
        return 1;
    }
    return 0;
}
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Conversion and Representation Errors
Lots of interesting, real numbers cannot be 

exactly represented
● The more significant digits involved, the more 

inexact the representation will be

● √2 get rounded to 1.41421356237309504880
• This is an irrational number with infinite significant digits
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Overflow and Underflow Errors
 If the result is too large (or too small) the result 

will overflow (or underflow)
● Multiply two very large (or small) numbers

● Divide a small number by a large number (or vice 
versa)

● Overflows will result in ±Inf

● Underflows will result in ±0
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Roundoff Errors
Result of an operation has more significant 

digits than can be represented
● X = (E = 3, F = 1.413351774) = 11.306814194

● Y = (E = 7, F = 1.933333278) = 247.466659546

● Results of X * Y:
• True result: 
2798.05953862742171622812747955322265625

• Computer result: (E = 10, F = 2.732480049) = (E = 11, F 
= 1.366240025) = 2798.0595703125
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Digitcancellation Errors
Related to round-off errors

● Subtracting nearly equal values

● Adding or subtracting a large value and a small 
value
• 1e20 + 1e-20 = 1e20

Floating point arithmetic is not associative!
● (9876543.0 + -9876547.0) + 3.45 = -0.5499999...

● 9876543.0 + (-9876547.0 + 3.45) = -1.0
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Input Errors
The source data may have errors

● Inexact measurement from a physical device

● Errors from previous calculations

● etc.
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Robust Comparisons
Obviously, direct comparison for equality are 

just plain wrong
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Robust Comparisons
Obviously, direct comparison for equality are 

just plain wrong

First improvement: compare absolute difference 
to some small value, 

if (fabs(x – y) < epsilon) { ... }

● Called absolute tolerance

● Picking  that works for a range of values is difficult 
or impossible
• sqrt(FLT_EPSILON) is usually a good choice
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Robust Comparisons (cont.)
Second improvement: compare abs ratio to 1.0

● Called relative tolerance

if (fabs((x / y) - 1.0) <= epsilon)
● Assumes |x| < |y|

if (fabs((x – y) / y) <= epsilon)
● First re-write

if (fabs(x – y) <= epsilon * fabs(y))
● Eliminate division

if (fabs(x – y) <= epsilon * max(fabs(x), 
fabs(y)))

● Eliminate |x| < |y| assumption
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Robust Comparisons (cont.)
Tolerances do have one ugly side-effect
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Robust Comparisons (cont.)
Tolerances do have one ugly side-effect

● A = B and B = C does not imply A = C
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Thick Planes Revisited
Not all numbers can be exactly represented in 

floating-point, so the true intersection point of a 
line and a plane may not be representable
● Other object-object intersections similarly affected

● Clipping the line to the plane effectively moves part 
of the line
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Thick Planes Revisited
Let e be the maximum error in the calculated P, 

then the thick plane has radius r, r > e
● How do we select an appropriate e?
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Thick Planes Revisited
Let e be the maximum error in the calculated P, 

then the thick plane has radius r, r > e
● How do we select an appropriate e?

● A the line and plane become more parallel, a 
selection of R leads to lager and larger e

● The selection of R 
limits the size of line 
segments or polygons 
that we can track
• Pick R based on the 

size of the smalled line 
or polygon
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Next week...
Final:

● Tuesday, December 11th at 7:45PM.

● DO NOT BE LATE!
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Legal Statement
 This work represents the view of the authors and does not necessarily 

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States, 
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or 
service marks of others.


