Data Structures \& Algorithms for Geometry

\bigcirc Agenda:

- Robustness of calculations
- Prepare for final
- Assignment \#4

Fixed-point Representation

\quad Select an n-bit data size, partition k-bits for the integral part and ($n-k$)-bits for the fractional part

- Numbers are evenly distributed
- The difference between all representable numbers is always $1 /\left(2^{n-k}\right)$.
- Color is usually done this way: 0-bits for the integral part, 8-bits for the fractional part
- Also the way all real-time graphics math is done on processors without floating-point units
- Pre-486, MIPS CPU in Playstation, Pre-68040, many "embedded" CPUs

Floating-point Representation

- Single precision:
- 1-bit for sign
- 8-bits for exponent
- 23-bits for fractional part
olf $E \neq 0$, value $=\left(-1^{\mathrm{S}} \times 1 . \mathrm{F} \times 2^{\mathrm{E}-127}\right)$
Э If $E=0$, value $=\left(-1^{\text {s }} \times 0 . F \times 2^{-126}\right)$
- These are denormalized (denorm for short)

Magic Values

- IEEE-754 defines some magic values:
- $(E=0, F=0, S=0) \rightarrow 0$
- $(E=0, F=0, S=1) \rightarrow-0$
- $(E=255, F=0, S=0) \rightarrow+\infty$
- $(E=255, F=0, S=1) \rightarrow-\infty$
- $(E=255, F \neq 0) \rightarrow$ Not a number (a.k.a., NaN)
- More on NaN and Inf in a few slides

Distribution of Values

\quad As the exponent increases, the real difference between two values increases

- $(E=200, F=1)-(E=200, F=0) \rightarrow \sim 4 \times 10^{56}$
$\bullet(E=1, F=1)-(E=1, F=0) \rightarrow \sim 1.4 \times 10^{45}$
\rightleftharpoons Usually, this is okay.
- This matches the notion of significant digits

NaN and Inf

$\ominus \pm \infty$ are used to represent overflow cases

- 1.0e20 / 1.0e-20 = +Inf
- -1.0e20 / 1.0e-20 = -Inf
- 1.0 / 0.0 = +Inf
- Not-a-number (NaN) is used to represent incalculable cases
- $0 / 0=\mathrm{NaN}$
- $\sqrt{ }-1=\mathrm{NaN}$
- Inf - Inf = NaN

NaN Quirks

© All comparisons involving NaN are false.

- Except $\mathrm{NaN} \neq \mathrm{NaN}$, which is true.

This means the following code segments will produce different results if x is NaN !

```
if (X < value) { a() } else { b() }
if (X >= value) { b() } else { a() }
```


NaN Quirks (cont.)

\quad NaN can he/p by avoiding the need for divide by zero tests

- This code from the textbook works even if Dot ($\mathrm{p} . \mathrm{n}, \mathrm{ab}$) is zero
int IntersectSegmentPlane(Point a, Point b, Plane p, float \&t, Point \&q)
\{

```
Vector ab = b - a;
t = (p.d - Dot(p.n, a)) / Dot(p.n, ab);
if (t >= 0.0f && t <= 1.0f) {
    q = a + t * ab;
        return 1;
}
return 0;
```


References

Hecker, Chris. 1996. Let's Get to the (Floating) Point. Game Developer Magazine. (Feb. / Mar. 1996).
http://chrishecker.com/Miscellaneous_Technical_Articles\#Floating_Point
Goldberg, D. 1991. What every computer scientist should know about floatingpoint arithmetic. ACM Computing Surveys. 23, 1 (Mar. 1991), 5-48. http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://en.wikipedia.org/wiki//EEE-754

Conversion and Representation Errors

\rightleftharpoons Lots of interesting, real numbers cannot be exactly represented

- The more significant digits involved, the more inexact the representation will be
- $\sqrt{ } 2$ get rounded to 1.41421356237309504880
- This is an irrational number with infinite significant digits

Overflow and Underflow Errors

- If the result is too large (or too small) the result will overflow (or underflow)
- Multiply two very large (or small) numbers
- Divide a small number by a large number (or vice versa)
- Overflows will result in \pm Inf
- Underflows will result in ± 0

Round-off Errors

- Result of an operation has more significant digits than can be represented
- $X=(E=3, F=1.413351774)=11.306814194$
- $Y=(E=7, F=1.933333278)=247.466659546$
- Results of X * Y:
- True result: 2798.05953862742171622812747955322265625
- Computer result: $(E=10, F=2.732480049)=(E=11, F$ $=1.366240025)=2798.0595703125$

Digit-cancellation Errors

© Related to round-off errors

- Subtracting nearly equal values
- Adding or subtracting a large value and a small value

$$
\text { - } 1 \mathrm{e} 20+1 \mathrm{e}-20=1 \mathrm{e} 20
$$

ค Floating point arithmetic is not associative!
$\bullet(9876543.0+-9876547.0)+3.45=-0.5499999 .$.

- $9876543.0+(-9876547.0+3.45)=-1.0$

Input Errors

θ The source data may have errors

- Inexact measurement from a physical device
- Errors from previous calculations
- etc.

References

http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_ecgtr_04_a.html http://en.wikipedia.org/wiki/Floating_point

Robust Comparisons

- Obviously, direct comparison for equality are just plain wrong

Robust Comparisons

ə Obviously, direct comparison for equality are just plain wrong

- First improvement: compare absolute difference to some small value, ε

$$
\text { if (fabs(x - y) < epsilon) \{ ... \} }
$$

- Called absolute tolerance
- Picking ε that works for a range of values is difficult or impossible
- sqrt (FLT_EPSILON) is usually a good choice

Robust Comparisons (cont.)

- Second improvement: compare abs ratio to 1.0
- Called relative tolerance

$$
\begin{aligned}
& \text { if (fabs((x / y) - 1.0) <= epsilon) } \\
& \text { - Assumes }|x|<|y| \\
& \text { if (fabs((x - y) / y) <= epsilon) } \\
& \text { - First re-write } \\
& \text { if (fabs(x - y) <= epsilon * fabs(y)) } \\
& \text { - Eliminate division } \\
& \text { if (fabs (x - y) <= epsilon * max (fabs(x), } \\
& \text { fabs(y))) } \\
& \text { - Eliminate }|\mathrm{x}|<|\mathrm{y}| \text { assumption }
\end{aligned}
$$

Robust Comparisons (cont.)

- Tolerances do have one ugly side-effect

Robust Comparisons (cont.)

- Tolerances do have one ugly side-effect
- $\mathrm{A}=\mathrm{B}$ and $\mathrm{B}=\mathrm{C}$ does not imply $\mathrm{A}=\mathrm{C}$

Thick Planes Revisited

θ Not all numbers can be exactly represented in floating-point, so the true intersection point of a line and a plane may not be representable

- Other object-object intersections similarly affected
- Clipping the line to the plane effectively moves part of the line

Thick Planes Revisited

$\operatorname{Let} e$ be the maximum error in the calculated P, then the thick plane has radius $r, r>e$

- How do we select an appropriate e?

Thick Planes Revisited

D Let e be the maximum error in the calculated P, then the thick plane has radius $r, r>e$

- How do we select an appropriate e?
- A the line and plane become more parallel, a selection of R leads to lager and larger e
- The selection of R limits the size of line segments or polygons that we can track
- Pick R based on the size of the smalled line

Next week...

θ Final:

- Tuesday, December $11^{\text {th }}$ at 7:45PM. - DO NOT BE LATE!

Legal Statement

- This work represents the view of the authors and does not necessarily represent the view of IBM or the Art Institute of Portland.
○ OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other countries, or both.
- Khronos and OpenGL ES are trademarks of the Khronos Group.
- Other company, product, and service names may be trademarks or service marks of others.

