
8-December-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Robustness of calculations

● Prepare for final

● Assignment #4

8-December-2007 © Copyright Ian D. Romanick 2007

Fixedpoint Representation
Select an n-bit data size, partition k-bits for the

integral part and (n-k)-bits for the fractional part
● Numbers are evenly distributed

• The difference between all representable numbers is
always 1/(2n-k).

● Color is usually done this way: 0-bits for the integral
part, 8-bits for the fractional part

● Also the way all real-time graphics math is done on
processors without floating-point units
• Pre-486, MIPS CPU in Playstation, Pre-68040, many

“embedded” CPUs

8-December-2007 © Copyright Ian D. Romanick 2007

Floatingpoint Representation
Single precision:

● 1-bit for sign

● 8-bits for exponent

● 23-bits for fractional part

 If E ≠ 0, value = (-1S × 1.F × 2E – 127)

 If E = 0, value = (-1S × 0.F × 2–126)
● These are denormalized (denorm for short)

8-December-2007 © Copyright Ian D. Romanick 2007

Magic Values
 IEEE-754 defines some magic values:

● (E = 0, F = 0, S = 0) → 0

● (E = 0, F = 0, S = 1) → −0

● (E = 255, F = 0, S = 0) → ∞

● (E = 255, F = 0, S = 1) → −∞

● (E = 255, F ≠ 0) → Not a number (a.k.a., NaN)
• More on NaN and Inf in a few slides

8-December-2007 © Copyright Ian D. Romanick 2007

Distribution of Values
As the exponent increases, the real difference

between two values increases
● (E = 200, F = 1) - (E = 200, F = 0) → ~4×1056

● (E = 1, F = 1) - (E = 1, F = 0) → ~1.4×10-45

Usually, this is okay.
● This matches the notion of significant digits

8-December-2007 © Copyright Ian D. Romanick 2007

NaN and Inf
±∞ are used to represent overflow cases

● 1.0e20 / 1.0e-20 = +Inf

● -1.0e20 / 1.0e-20 = -Inf

● 1.0 / 0.0 = +Inf

Not-a-number (NaN) is used to represent
incalculable cases
● 0 / 0 = NaN

● -1 = NaN

● Inf - Inf = NaN

8-December-2007 © Copyright Ian D. Romanick 2007

NaN Quirks
All comparisons involving NaN are false.

● Except NaN ≠ NaN, which is true.

This means the following code segments will
produce different results if x is NaN!
if (X < value) { a() } else { b() }

...

if (X >= value) { b() } else { a() }

8-December-2007 © Copyright Ian D. Romanick 2007

NaN Quirks (cont.)
NaN can help by avoiding the need for divide by

zero tests
● This code from the textbook works even if
Dot(p.n, ab) is zero

int IntersectSegmentPlane(Point a, Point b, Plane p,
 float &t, Point &q)
{
 Vector ab = b – a;
 t = (p.d – Dot(p.n, a)) / Dot(p.n, ab);
 if (t >= 0.0f && t <= 1.0f) {
 q = a + t * ab;
 return 1;
 }
 return 0;
}

8-December-2007 © Copyright Ian D. Romanick 2007

References
Hecker, Chris. 1996. Let's Get to the (Floating) Point. Game Developer

Magazine. (Feb. / Mar. 1996).
http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point

Goldberg, D. 1991. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys. 23, 1 (Mar. 1991), 5-48.
http://docs.sun.com/source/806-3568/ncg_goldberg.html

http://en.wikipedia.org/wiki/IEEE-754

http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://en.wikipedia.org/wiki/IEEE-754

8-December-2007 © Copyright Ian D. Romanick 2007

Conversion and Representation Errors
Lots of interesting, real numbers cannot be

exactly represented
● The more significant digits involved, the more

inexact the representation will be

● √2 get rounded to 1.41421356237309504880
• This is an irrational number with infinite significant digits

8-December-2007 © Copyright Ian D. Romanick 2007

Overflow and Underflow Errors
 If the result is too large (or too small) the result

will overflow (or underflow)
● Multiply two very large (or small) numbers

● Divide a small number by a large number (or vice
versa)

● Overflows will result in ±Inf

● Underflows will result in ±0

8-December-2007 © Copyright Ian D. Romanick 2007

Roundoff Errors
Result of an operation has more significant

digits than can be represented
● X = (E = 3, F = 1.413351774) = 11.306814194

● Y = (E = 7, F = 1.933333278) = 247.466659546

● Results of X * Y:
• True result:
2798.05953862742171622812747955322265625

• Computer result: (E = 10, F = 2.732480049) = (E = 11, F
= 1.366240025) = 2798.0595703125

8-December-2007 © Copyright Ian D. Romanick 2007

Digitcancellation Errors
Related to round-off errors

● Subtracting nearly equal values

● Adding or subtracting a large value and a small
value
• 1e20 + 1e-20 = 1e20

Floating point arithmetic is not associative!
● (9876543.0 + -9876547.0) + 3.45 = -0.5499999...

● 9876543.0 + (-9876547.0 + 3.45) = -1.0

8-December-2007 © Copyright Ian D. Romanick 2007

Input Errors
The source data may have errors

● Inexact measurement from a physical device

● Errors from previous calculations

● etc.

8-December-2007 © Copyright Ian D. Romanick 2007

References
http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_ecgtr_04_a.html

http://en.wikipedia.org/wiki/Floating_point

http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_ecgtr_04_a.html
http://en.wikipedia.org/wiki/Floating_point

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons
Obviously, direct comparison for equality are

just plain wrong

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons
Obviously, direct comparison for equality are

just plain wrong

First improvement: compare absolute difference
to some small value,

if (fabs(x – y) < epsilon) { ... }

● Called absolute tolerance

● Picking that works for a range of values is difficult
or impossible
• sqrt(FLT_EPSILON) is usually a good choice

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons (cont.)
Second improvement: compare abs ratio to 1.0

● Called relative tolerance

if (fabs((x / y) - 1.0) <= epsilon)
● Assumes |x| < |y|

if (fabs((x – y) / y) <= epsilon)
● First re-write

if (fabs(x – y) <= epsilon * fabs(y))
● Eliminate division

if (fabs(x – y) <= epsilon * max(fabs(x),
fabs(y)))

● Eliminate |x| < |y| assumption

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons (cont.)
Tolerances do have one ugly side-effect

8-December-2007 © Copyright Ian D. Romanick 2007

Robust Comparisons (cont.)
Tolerances do have one ugly side-effect

● A = B and B = C does not imply A = C

8-December-2007 © Copyright Ian D. Romanick 2007

Thick Planes Revisited
Not all numbers can be exactly represented in

floating-point, so the true intersection point of a
line and a plane may not be representable
● Other object-object intersections similarly affected

● Clipping the line to the plane effectively moves part
of the line

8-December-2007 © Copyright Ian D. Romanick 2007

Thick Planes Revisited
Let e be the maximum error in the calculated P,

then the thick plane has radius r, r > e
● How do we select an appropriate e?

8-December-2007 © Copyright Ian D. Romanick 2007

Thick Planes Revisited
Let e be the maximum error in the calculated P,

then the thick plane has radius r, r > e
● How do we select an appropriate e?

● A the line and plane become more parallel, a
selection of R leads to lager and larger e

● The selection of R
limits the size of line
segments or polygons
that we can track
• Pick R based on the

size of the smalled line
or polygon

8-December-2007 © Copyright Ian D. Romanick 2007

Next week...
Final:

● Tuesday, December 11th at 7:45PM.

● DO NOT BE LATE!

8-December-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

